

Autonomous Navigation Performance During The Hartley 2 Comet Flyby

EPOXI Mission

Matthew Abrahamson, Brian Kennedy, Shyam Bhaskaran

NASA – Jet Propulsion Laboratory California Institute of Technology

SpaceOps 2012 Conference
June 14, 2012

Autonomous Navigation

What?

 The capability to estimate a spacecraft trajectory and calculate maneuvers entirely onboard

Why?

 During high-dynamics events, ground-in-the-loop navigation is not practical due to long transmission and ground processing times

How?

Optical measurements are recorded by a spacecraft camera

Implementation on EPOXI mission

- AutoNav C-based software package performs image processing, state estimation, and maneuver calculation onboard
- Attitude control uses AutoNav trajectory solution to point instruments

Comet Flybys

AutoNav is critical to small body flybys

- Small body ephemerides are not known accurately prior to flyby
- Time of flight errors cannot be resolved until parallax is observed in observations near closest approach
- Without AutoNav trajectory updates, the comet nucleus must be captured as a mosaic by scanning the camera across the sky

EPOXI Hartley 2 Flyby Requirements

- Continuously track comet nucleus in 10-mrad field of view
- \pm 3.5 km trajectory knowledge, \pm 0.3 seconds time of flight knowledge

EPOXI Mission Challenges

- Reuse of Deep Impact Spacecraft with new objectives
 - 1. Imaging is **continuous** through 700km closest approach (180° slew)
 - 2. Hartley 2 is **smaller**, more **active**, rotating **faster**
 - 3. Relative flyby velocity is **faster**
 - Different Sun-Comet-S/C geometry
- Attitude bias errors cannot be estimated using Deep Impact version of AutoNav
- Center of brightness observation is offset from true center of mass
- Goal: Track comet nucleus in camera continuously through closest approach

	Tempel 1	Hartley 2
Primary Objective	Observe impact	Observe nucleus
Observation Gap	E-50 sec to E+40 min	No Gap
Comet Size	7.6 km x 4.9 km	2.2 km x 0.5 km
Comet Period	40.7 hours	18.1 hours
Relative Velocity	10.2 km/s	12.3 km/s
Solar Phase Angle at Closest Approach	64°	77°
Max Resolution	7 m/pixel	7 m/pixel

Optical Measurements

Simulated MRI Field of View

- Sliding Data Arc:
- Arc Length

 Max Data History

 Now

- Cameras
 - Medium Resolution Imager (MRI): 10-mrad FOV
 - High Resolution Imager (HRI):2-mrad FOV
 - 1024 x 1024 pixel CCD
- Observed-Computed Residuals in MRI Pixels:

Residuals =

Uncertainty Sources

- 1. Position/Velocity errors in ground-based S/C and comet trajectories
- 2. Comet pole & phase
- 3. Attitude knowledge errors
 - Ability of startracker & gyroscope instruments to estimate attitude
 - Modes: Nominal (Startracker τ=8000s), Override1 (gyros only), Override2 (Startracker τ=100s)
 - Startracker error is primarily a bias
 - Gyroscope errors include drift, scale factor, and misalignment effects

Monte Carlo Simulation

- Monte Carlo simulation directly applies user-defined uncertainty models to the simulated image and attitude data processed by the flight code.
- Output: 3-σ observed-predicted residuals in camera pixels

Approach Phase

- Approach characterized by transition from ground-based trajectory to AutoNav
- Determination of AutoNav start time is a trade between signal strength and the penalty of stale ephemeris errors.
 - Imaging commenced at E-50 minutes with a 15 second cadence
 - Orbit determination (OD) updates commenced at E-42 minutes with a 1 minute cadence

Encounter Phase

- Encounter characterized by 180° slew through closest approach
- Pre-flyby and post-flyby measurements do not match a dynamic trajectory model due to center of brightness offset and attitude errors

Case	Comet Shape	Att Errors	OD Arc Length	Blobber Weight	Centroid Weight	Velocity Sigma
Α	0.4km x 0.4km x 0.4km	Off	20 min	15 px	15 px	0.5 m/s
В	2.2km x 0.5km x 0.3km	Off	20 min	15 px	15 px	0.5 m/s
С	2.2km x 0.5km x 0.3km	On	20 min	15 px	15 px	0.5 m/s
D	2.2km x 0.5km x 0.3km	On	8 min	15 px	15 px	0.5 m/s
Е	2.2km x 0.5km x 0.3km	On	8 min	15 px	100 px	0.5 m/s
F	2.2km x 0.5km x 0.3km	On	8 min	15 px	100 px	2.0 m/s

Filter Adjustments

- Case D: Reduce arc length to 8 min
- Case E: Adjust filter weighting of optical data to 100 pixels from E-7min to E+2min
- Case F: Adjust filter velocity sigma from 0.5 m/s to 2.0 m/s

Departure Phase

- Departure characterized by system recovery after the 180° encounter slew
 - Determine AutoNav end time and transition to ground-based trajectory
 - Correct the gyros-only attitude solution with startracker data
 - Allow sufficient time for AutoNav to react to attitude correction
 - Minimize the pointing impact during the post-flyby IR scans.
- Star trackers reincorporated at E+10min during AutoNav outage

Departure Configuration

- E+10min: Override2 Mode (τ=100s)
- E+18min: Nominal Mode (τ=8000s)
- E+30min: Final OD Update
- E+50min:
 Transition to ground-based trajectory

= IR Scan Start

Flyby Performance

- AutoNav flyby performance well characterized by Monte Carlo simulations
- First OD update corrects 1 pixel in the pixel axis, 12 pixels in the line axis
- Maximum residual of ~20 pixels observed at E+1 min
- ~10 pixel residual during attitude convergence on departure

EPOXI Hartley 2 Images

Questions?

Flyby Video

BACKUP

Attitude Issues

- No capability to estimate attitude knowledge bias errors with the version of AutoNav flying on the Deep Impact spacecraft
- Attitude knowledge errors absorbed into position & velocity estimates
- Position and velocity error estimates combine to create a fixed bias profile in the camera

Flyby State Errors

Error Models

Error Model	3-σ Uncertainty	Distribution
Position Crosstrack	20 km	Gaussian
Position Downtrack	300 km	Gaussian
Velocity Crosstrack	5 cm/s	Gaussian
Velocity Downtrack	5 cm/s	Gaussian
Comet Pole RA	360 deg	Gaussian
Comet Pole DEC	180 deg	Gaussian
Comet Phase	360 deg	Gaussian

Error Model	3-σ Uncertainty	Distribution
Startracker Bias	300 urad, each axis	Uniform
Star Changeout	100 urad, each axis	Gaussian
Startracker temporal noise	50 urad, each axis	Gaussian
Gyro Drift	500 urad/hr, each axis	Gaussian
Gyro Scale Factor	183 ppm, each axis	Gaussian
Gyro Misalignment	80 urad, each axis	Gaussian